Zoological Science
Volume 27, Issue 2, 2010
Volumes & issues:
-
OVERVIEW
-
-
More Diversity and More Convergence in Tunicate Biology
View Description Hide DescriptionThe 5th International Tunicate Meeting (ITM5) was held at the Okinawa Industry Support Center (Naha, Okinawa, Japan) from June 21 to 25, 2009, with support from the Okinawa Institute of Science and Technology (OIST) and the Inoue Foundation for Science. Tunicates are defined as deuterostome metazoans that have notochord in the tail at one point or at all times during their life. Presence of a cellulosic integument is also a synapomorphy for this taxon, which consists of three classes: Ascidiacea, Thaliacea, and Appendicularia. Ascidians, the largest class, are always sessile, while thaliaceans and appendicularians are pelagic throughout their life. Many unique and interesting data sets are available that facilitate research on tunicates, such as full-genome information for Ciona, numerous ESTs with in-situ hybridization images, well-documented cell lineages during embryogenesis, among many others. The present note gives an overview of the topics from the sessions and plenary lectures of ITM5. As seen below, the tunicate scientific community is worldwide, with flexible networks among tunicate biologists, and a particularly wide range of species diversity and phenomena were presented during ITM5. ITM6 is planned for 2011 in Montreal.
-
-
ARTICLES
-
-
Identification of Genes Downstream of Nodal in the Ciona intestinalis Embryo
View Description Hide DescriptionNodal, a growth factor belonging to the TGF-β superfamily, is required for the formation of the neural tube in Ciona intestinalis. Previous studies have revealed many genes whose expression is controlled by Nodal in the Ciona embryo; however, all of them encode transcription factors and signaling molecules. In the present study, we identified five genes upregulated or downregulated by the overexpression of Nodal in embryos of C. intestinalis. The upregulated genes included those encoding type IV collagen 1/3/5, laminin-α5, and Prickle. The downregulated genes included those encoding glypican and δ1-protocadherln-like. Many of these genes were expressed in the neural plate at the late gastrula stage. The present study revealed candidate effector genes that directly regulate, in response to Nodal, the morphogenesis of the neural tube in Ciona intestinalis.
-
Upstream Regulatory Sequences Required for Specific Gene Expression in the Ascidian Neural Tube
View Description Hide DescriptionThe relatively simple structure of ascidians and the number of associated molecular resources that are available make ascidians an excellent experimental system for Investigating the molecular mechanisms underlying neural tube formation. The ascidian neural tube demonstrates the same basic morphology as that of vertebrates. We have described the expression of the neural tubespecific gene CiNut1, which is expressed within neural tube precursor cells from the gastrula stage, and along the entire length of the neural tube during its formation. In this study, we focused on the transcriptional mechanisms that regulate CiNut1 expression. We found that an approximately 1.0 kb upstream sequence was able to recapitulate endogenous CiNut1 expression. A deletion analysis showed that the 119 bp upstream fragment containing two ZicL-binding consensus sequences and one Fox core sequence could also drive the neural tube-specific expression. When mutations were Introduced into the distal ZicL binding site (ZicL1), the neural tube-specific expression almost disappeared. Although the Importance of the proximal ZicL site (ZicL2) and the Fox core sequence have yet to be elucidated, we hypothesize that ZicL regulates gene transcription in the entire neural tube of the ascidian.
-
Distinctive Expression Patterns of Hedgehog Pathway Genes in the Ciona intestinalis Larva: Implications for a Role of Hedgehog Signaling in Postembryonic Development and Chordate Evolution
View Description Hide DescriptionMembers of the Hedgehog (Hh) family are soluble ligands that orchestrate a wide spectrum of developmental processes ranging from left-right axis determination of the embryo to tissue patterning and organogenesis. Tunicates, including ascidians, are the closest relatives of vertebrates, and elucidation of Hh signaling in ascidians should provide an important clue towards better understanding the role of this pathway in development. In previous studies, expression patterns of genes encoding Hh and its downstream factor Gli have been examined up to the tailbud stage in the ascidian embryo, but their expression in the larva has not been reported. Here we show the spatial expression patterns of hedgehog (Ci-hh1, Ci-hh2), patched (Ci-ptc), smoothened (Ci-smo), and Gli (Ci-Gli) orthologs in larvae of the ascidian Ciona intestinalis. The expression patterns of Ci-hh2 and Ci-Gli dramatically change during the period between the late tailbud embryo and the swimming larva. At the larval stage, expression of Ci-Gli was found in a central part of the endoderm and in the visceral ganglion, while Ci-hh2 was expressed in two discrete endodermal regions, anteriorly and posteriorly adjacent to the cells expressing Gli. The expression patterns of these genes suggest that the Hh ligand controls postembryonic development of the endoderm and the central nervous system. Expression of a gene encoding Hh in the anterior and/or pharyngeal endoderm is probably an ancient chordate character; diversification of regulation and targets of the Hh signaling in this region may have played a major role in the evolution of chordate body structures.
-
Regeneration in the Hemichordate Ptychodera flava
View Description Hide DescriptionWhen the body of P. flava is severed, the animal has the ability to regenerate its missing anterior or posterior as appropriate. We have focused on anterior regeneration when the head and branchial regions are severed from the body of the worm. After transection, the body wall contracts and heals closed in 2 to 3 days. By the third day a small blastema is evident at the point of closure. The blastema grows rapidly and begins the process of differentiating into a head with a proboscis and collar. At 5 days the blastema has increased greatly in size and differentiated into a central bulb, the forming proboscis, and two lateral crescents, the forming collar. Between 5 and 7 days a mouth opens ventral to the differentiating blastema. Over the next few days the lateral crescents extend to encircle the proboscis and mouth, making a fully formed collar. By 10 to 12 days a new head, sized to fit the worm's body, has grown attached to the severed site. At about this time the animal regains apparently normal burrowing behavior. After the head is formed, a second blastema-like area appears between the new head and the old body and a new branchial region is inserted by regeneration from this blastema over the next 2 to 3 weeks. The regenerating tissues are unpigmented and whitish such that in-situ hybridization can be used to study the expression of genes during the formation of new tissues.
-
Natural Apoptosis During the Blastogenetic Cycle of the Colonial Ascidian Botryllus schlosseri: A Morphological Analysis
View Description Hide DescriptionColonies of the compound ascidian Botryllus schiosseri undergo regular generation changes, during which adult zooids are progressively resorbed and replaced by growing buds. The generation change, or take-over, is characterized by massive cell death by apoptosis, as indicated by nuclear condensation, activation of caspases, overexpression of molecules recognized by antibodies against mammalian Bax, Fas, and FasL, changes in the expression of surface molecules by senescent cells of zooid tissues, and recruitment of circulating phagocytes in zooid tissues which ensure the complete clearing of dying cells. The entire process lasts 24–36 h at 20°C and has been subdivided, on the basis of the degree of contraction of old zooids, into four substages. In the present work, we carried out a detailed morphological analysis of the events occurring in zooid tissues during the take-over substages. Results Indicate that traces of apoptosis can be found in the epidermis, peribranchial epithelium, and heart in the late substage but are easily found in the branchial basket 2–4 h after the beginning of the generation change, thus confirming the antero-posterior progression of cell death, at least in the alimentary system.
-
Differential Regional Expression of Genes in the Developing Brain of Ciona intestinalis Embryos
View Description Hide DescriptionOur previous transcriptome analysis identified 565 genes that are preferentially expressed in the developing brain of Ciona intestinalis larvae. Here, we show by in-situ hybridization that the spatial expression patterns of these brain-specific genes fall into different categories depending on the regions where the gene is expressed. For example, Ci-opsin3 and Ci-Dkk3 are expressed in the entire brain, Ci-tyrosinase and Ci-TYRP1 in the dorsal region, and Ci-synaptotagmin3, Ci-ZF399, and Ci-PTFb in the ventral region. Other genes are specific to the posterior, anterior, central, posterior and ventral, or anterior-ventral region of the brain. This regional expression of genes in the Ciona brain is not always associated with cell lineage, suggesting that complex mechanisms control the regionalized expression of brain-specific genes.
-
Regulation of Notochord-Specific Expression of Ci-Bra Downstream Genes in Ciona intestinalis Embryos
View Description Hide DescriptionBrachyury, a T-box transcription factor, is expressed in ascidian embryos exclusively in primordial notochord cells and plays a pivotal role in differentiation of notochord cells. Previously, we identified ∼450 genes downstream of Ciona intestinalis Brachyury (Ci-Bra), and characterized the expression profiles of 45 of these in differentiating notochord cells. In this study, we looked for cisregulatory sequences in minimal enhancers of 20 Ci-Bra downstream genes by electroporating region within ∼3 kb upstream of each gene fused with lacZ. Eight of the 20 reporters were expressed in notochord cells. The minimal enchancer for each of these eight genes was narrowed to a region ∼0.5–1.0-kb long. We also explored the genome-wide and coordinate regulation of 43 Ci-Bra-downstream genes. When we determined their chromosomal localization, it became evident that they are not clustered in a given region of the genome, but rather distributed evenly over 13 of the 14 pairs of chromosomes, suggesting that gene clustering does not contribute to coordinate control of the Ci-Bra downstream gene expression. Our results might provide Insights Into the molecular mechanisms underlying notochord formation in chordates.
-
Origin and Genetic Evolution of the Vertebrate Skeleton
View Description Hide DescriptionThe current understanding of the origin and evolution of the genetic cassette for the vertebrate skeletal system is reviewed. Molecular phylogenetic analyses of fibrillar collagen genes, which encode the main component of both cartilage and mineralized bone, suggest that genome duplications in vertebrate ancestors were essential for producing distinct collagen fibers for cartilage and mineralized bone. Several data Indicate co-expression of the ancestral copy of fibrillar collagen with the SoxE and Runx transcription factors. Therefore, the genetic cassette may have already existed in protochordate ancestors, and may operate in the development of the pharyngeal gill skeleton. Accompanied by genome duplications in vertebrate ancestors, this genetic cassette may have also been duplicated and co-opted for cartilage and bone. Subsequently, the genetic cassette for cartilage recruited novel genetic material via domain shuffling. Aggrecan, acquired by means of domain shuffling, performs an essential role in cartilage as a shock absorber. In contrast, the cassette for bone recruited new genetic material produced by tandem duplication of the SPARC/osteonectin genes. Some of the duplicated copies of SPARC/osteonectin became secretory Cabinding phosphoproteins (SCPPs) performing a central role in mineralization by regulating the calcium phosphate concentration. Comparative genome analysis revealed similar molecular evolutionary histories for the genetic cassettes for cartilage and bone, namely duplication of the ancestral genetic cassette and recruitment of novel genetic material.
-
Transfer of Prokaryotic Algal Symbionts from a Tropical Ascidian (Lissoclinum punctatum) Colony to Its Larvae
View Description Hide DescriptionLissoclinum punctatum is a colonial ascidian that harbors the symbiotic prokaryotic alga Prochloron in its tunic and in the peribranchial and common cloacal cavities. Most symbiotic cells in the tunic are intracellular (tunic phycocytes), while those in the cavities are extracellular. We found that neither gametes nor embryos brooded in the tunic were associated with photosymbionts. We determined that algal cells attach to posterior parts of the trunk of hatching larvae swimming in the common cloacal cavity. No symbiont cells were found intracellularly in larval tissues. Thus, extracellular Prochloron cells in the cloacal cavities were transferred to the larvae, but intracellular photosymbionts in the tunic were not. The intracellular symbiosis must be reestablished in each generation after larval settlement.
-
Oikopleura dioica Alcohol Dehydrogenase Class 3 Provides New Insights into the Evolution of Retinoic Acid Synthesis in Chordates
View Description Hide DescriptionEnzymes that synthesize retinoic acid (RA) constitute the first level of regulation of RA action. In vertebrates, enzymes of the medium-chain alcohol dehydrogenase (MDR-Adh) family catalyze the first step of the RA synthetic pathway by oxidizing retinol. Among MDR-Adh enzymes, Adh3 is the only member present in non-vertebrates, and whether Adh3 is actually involved in RA biosynthesis remains uncertain. Here, we investigate the MDR-Adh family in Oikopleura dioica, a urochordate representing the sister group to vertebrates. Oikopleura is of special interest because it has lost the classical RA role in development, which relaxed evolutionary constraints to preserve the RA-genetic machinery, leading to the loss of RA-system components. The hypothesis that Adh3 plays a role in RA synthesis predicts that the relaxation of selection in Oikopleura should have led to the loss of Adh3, or changes in residues related to retinol oxidation. The hypothesis also predicts changes in the expression pattern of Oikopleura Adh3 compared to other chordates that preserved RA-signaling. Our results, however, revealed the presence of a highly conserved Adh3 gene in Oikopleura, with no significant changes in functional residues. Our results also revealed that the Oikopleura Adh3 expression remains unchanged in comparison to other non-vertebrate chordates, restricted to specific compartments of the digestive system. Because Adh3 has been highly conserved in an animal that has dismantled the RA system, we conclude that Adh3 preservation is not due to a conserved role in RA synthesis. Thereby, if Adh3 plays a role in RA synthesis in vertebrates, it might be a lineage-specific neofunctionalization.
-
Neuropeptides, Hormone Peptides, and Their Receptors in Ciona intestinalis: An Update
View Description Hide DescriptionThe critical phylogenetic position of ascidians leads to the presumption that neuropeptides and hormones in vertebrates are highly likely to be evolutionarily conserved in ascidians, and the cosmopolitan species Ciona intestinalis is expected to be an excellent deuterostome Invertebrate model for studies on neuropeptides and hormones. Nevertheless, molecular and functional characterization of Ciona neuropeptides and hormone peptides was restricted to a few peptides such as a cholecystokinin (CCK)/gastrin peptide, cionin, and gonadotropin-releasing hormones (GnRHs). In the past few years, mass spectrometric analyses and database searches have detected Ciona orthologs or prototypes of vertebrate peptides and their receptors, including tachykinin, insulin/relaxin, calcitonin, and vasopressin. Furthermore, studies have shown that several Ciona peptides, including vasopressin and a novel GnRH-related peptide, have acquired ascidian-specific molecular forms and/or biological functions. These findings provided indisputable evidence that ascidians, unlike other invertebrates (including the traditional protostome model animals), possess neuropeptides and hormone peptides structurally and functionally related to vertebrate counterparts, and that several peptides have uniquely diverged in ascidian evolutionary lineages. Moreover, recent functional analyses of Ciona tachykinin in the ovary substantiated the novel tachykininergic protease-assoclated oocyte growth pathway, which could not have been revealed in studies on vertebrates. These findings confirm the outstanding advantages of ascidians in understanding the neuroscience, endocrinology, and evolution of vertebrate neuropeptides and hormone peptides. This article provides an overview of basic findings and reviews new knowledge on ascidian neuropeptides and hormone peptides.
-
Comparative Overview of Toll-Like Receptors in Lower Animals
View Description Hide DescriptionToll-like receptors (TLRs) have been shown to play a crucial role in host defense against pathogenic microbes in innate immunity in mammals. Recent genome-wide analyses have suggested that TLRs or related genes are conserved in the genome of non-mammalian organisms such as fishes, cyclostomes, ascidians, cephalochordates, sea urchins, and hydras. However, neither active forms nor functions of authentic invertebrate TLRs had been elucidated. Quite recently, we verified the structures, localization, ligand recognition, activities, and inflammatory cytokine production of two TLRs in the ascidian Ciona intestinalis, designated Ci-TLR1 and Ci-TLR2. Both Ci-TLRs possess a unique structural organization, with moderate sequence similarity to functionally characterized vertebrate TLRs, and are expressed predominantly in the stomach and intestine as well as in hemocytes. Unlike vertebrate TLRs, Ci-TLR1 and Ci-TLR2 are present in both the plasma membrane and endosomes. Furthermore, both Ci-TLR1 and Ci-TLR2 stimulate NF-κB induction in response to multiple pathogenic ligands that are differentially recognized by respective vertebrate TLRs. Pathogenic ligands that stimulate the Ci-TLRs also induce the expression of Ci-TNFα in the intestine and stomach, where the Ci-TLRs are abundantly expressed. These data reveal the conservation of the TLR-triggered innate immune system in C. intestinalis, and both common and unique biological and immunological functions of the Ci-TLRs. Based on the latest findings, we review recent advances in studies of TLRs or related receptors in fish, cyclostomes, deuterostome invertebrates, and hydra, and also the significance of studies of lower organism TLRs.
-
Computational Identification of Ciona intestinalis MicroRNAs
View Description Hide DescriptionMicroRNAs (miRNAs) are conserved non-coding small RNAs with potent post-transcriptional gene regulatory functions. Recent computational approaches and sequencing of small RNAs had indicated the existence of about 80 Ciona intestinalis miRNAs, although it was not clear whether other miRNA genes were present in the genome. We undertook an alternative computational approach to look for Ciona miRNAs. Conserved non-coding sequences from the C. intestinalis genome were extracted and computationally folded to identify putative hairpin-like structures. After applying additional criteria, we obtained 458 miRNA candidates whose sequences were used to design a custom microarray. Over 100 of our predicted hairpins were identified in this array when probed with RNA from various Ciona stages. We also compared our predictions to recently deposited sequences of Ciona small RNAs and report that 170 of our predicted hairpins are represented in this data set. Altogether, about 250 of our 458 predicted miRNAs were represented in either our array data or the small-RNA sequence database. These results suggest that Ciona has a large number of genomically encoded miRNAs that play an important role in modulating gene activity in developing embryos and adults.
-
SL RNA Genes of the Ascidian Tunicates Ciona intestinalis and Ciona savignyi
View Description Hide DescriptionWe characterized by bioinformatics the trans-spliced leader donor RNA (SL RNA) genes of two ascidians, Ciona intestinalis and Ciona savignyi. The Ciona intestinalis genome contains ∼670 copies of the SL RNA gene, principally on a 264-bp tandemly repeated element. Fluorescent in-situ hybridization mapped most of the repeats to a single site on the short arm of chromosome 8. The Ciona intestinalis genome also contains ∼100 copies of a >3.6-kb element that carries 1) an SL RNA-related sequence (possible a pseudogene) and 2) genes for the U6 snRNA and a histone-like protein. The Ciona savignyi genome contains two SL RNA gene classes having the same SL sequence as Ciona intestinalis but differing in the intron-like segments. These reside in similar but distinct repeat units of 575 bp (∼410 copies) and 552 bp (∼250 copies) that are arranged as separate tandem repeats. In neither Ciona species is the 5S RNA gene present within the SL RNA gene repeat unit. Although the number of SL RNA genes is similar, there is little sequence similarity between the intestinalis and savignyi repeat units, apart from the region encoding the SL RNA itself. This suggests that cis-regulatory elements involved in transcription and 3′-end processing are likely to be present within the transcribed region. The genomes of both Ciona species also include > 100 dispersed short elements containing the 16-nt SL sequence and up to 6 additional nucleotides of the SL RNA sequence.
-
Simple Motor System of the Ascidian Larva: Neuronal Complex Comprising Putative Cholinergic and GABAergic/Glycinergic Neurons
View Description Hide DescriptionThe ascidian larva is an excellent model for studies of the functional organization and neuronal circuits of chordates due to its remarkably simple central nervous system (CNS), comprised of about 100 neurons. To date, however, the identities of the various neurons in the ascidian larva, particularly their neurotransmitter phenotypes, are not well established. Acetylcholine, GABA, and glycine are critical neurotransmitters for locomotion in many animals. We visualized putative cholinergic neurons and GABAergic/glycinergic neurons in the ascidian larva by immunofluorescent staining using antibodies against vesicular acetylcholine transporter (VACHT) and vesicular GABA/glycine transporter (VGAT), respectively. Neurons expressing a cholinergic phenotype were found in the brain vesicle and the visceral ganglion. Five pairs of VACHT-positive neurons were located in the visceral ganglion. These putative cholinergic neurons extended their axons posteriorly and formed nerve terminals proximal to the most anterior muscle cells in the tail. VGAT-positive neurons were located in the brain vesicle, the visceral ganglion, and the anterior nerve cord. Two distinct pairs of VGAT-positive neurons, bilaterally aligned along the anterior nerve cord, extended axons anteriorly, near to the axons of the contralateral VACHT-positive neurons. Cell bodies of the VGAT-positive neurons lay on these nerve tracts. The neuronal complex, comprising motor neurons with a cholinergic phenotype and some of the GABA/glycinergic interneurons, has structural features that are compatible with a central pattern generator (CPG) producing a rhythmic movement of the tail. The simple CPG of the ascidian larva may represent the ancestral state of the vertebrate motor system.
-
Neural Map of the Larval Central Nervous System in the Ascidian Ciona intestinalis
View Description Hide DescriptionWe examined the distribution patterns and axonal pathways of cholinergic, GABAergic, and dopaminergic neurons in the central nervous system of Ciona intestinalis larvae, based on the expression patterns of two reporter genes (GFP and LacZ) driven by the promoters of several neuron-specific genes (vesicular acetylcholine transporter, glutamic acid decarboxylase, tyrosine 3-hydroxylase and dopa decarboxylase). Putative cholinergic and GABAergic cells were found in the sensory vesicle (SV) and visceral ganglion (VG), while putative dopaminergic cells were found only in the SV. The axons of almost all putative cholinergic and GABAergic cells in the SV extend posteriorly towards the VG and seem to connect with motor neurons. Some cells extend axons to the proximal region of the tail beyond the trunk-tail boundary. As this tail region contains several neurons, these cells may modulate larval behavior through the latter neurons. We also found that some putative cholinergic and GABAergic cells in the dorsal VG form a complex and extend axons anteriorly to the SV, posteriorly to the tail, and possibly ventrally to some motor neurons. Finally, we observed that one pair of the anterior most putative cholinergic cells in the ventral VG extends axons contralaterally to the right and left caudal axon tracts. We discuss the similarity of these cells to the Mauthner cells in vertebrates.
-
Multidimensional Analysis of Uncharacterized Sperm Proteins in Ciona intestinalis: EST-Based Analysis and Functional Immunoscreening of Testis-Expressed Genes
View Description Hide DescriptionAn extensive analysis of testis-expressed genes in the ascidian Ciona intestinalis explored a large number of genes of unknown function. Here we characterized these genes or gene products in a multidimensional manner. We analyzed genes both highly and uniquely expressed in the testis, as expected from the EST analysis. Immunolocalization of these proteins revealed that they are all expressed in sperm. Sperm membrane/matrix proteins play essential roles in cell responses and intracellular signaling at fertilization. By immunoscreening with antisera against the detergentsoluble and membrane fractions of sperm, we isolated 49 potential cDNA clones for membrane/matrix proteins. These included several unidentified genes, including a protein with sequence similarity to mammalian testicular cancer antigen Sp17. These data should facilitate exploration of the functions of uncharacterized sperm proteins and ultimately elucidate new molecular mechanisms in sperm physiology.
-